Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 6: 0156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560381

RESUMO

The periderm is a vital protective tissue found in the roots, stems, and woody elements of diverse plant species. It plays an important function in these plants by assuming the role of the epidermis as the outermost layer. Despite its critical role for protecting plants from environmental stresses and pathogens, research on root periderm development has been limited due to its late formation during root development, its presence only in mature root regions, and its impermeability. One of the most straightforward measurements for comparing periderm formation between different genotypes and treatments is periderm (phellem) length. We have developed PAT (Periderm Assessment Toolkit), a high-throughput user-friendly pipeline that integrates an efficient staining protocol, automated imaging, and a deep-learning-based image analysis approach to accurately detect and measure periderm length in the roots of Arabidopsis thaliana. The reliability and reproducibility of our method was evaluated using a diverse set of 20 Arabidopsis natural accessions. Our automated measurements exhibited a strong correlation with human-expert-generated measurements, achieving a 94% efficiency in periderm length quantification. This robust PAT pipeline streamlines large-scale periderm measurements, thereby being able to facilitate comprehensive genetic studies and screens. Although PAT proves highly effective with automated digital microscopes in Arabidopsis roots, its application may pose challenges with nonautomated microscopy. Although the workflow and principles could be adapted for other plant species, additional optimization would be necessary. While we show that periderm length can be used to distinguish a mutant impaired in periderm development from wild type, we also find it is a plastic trait. Therefore, care must be taken to include sufficient repeats and controls, to minimize variation, and to ensure comparability of periderm length measurements between different genotypes and growth conditions.

2.
J Card Surg ; 37(12): 5202-5206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150152

RESUMO

BACKGROUND: Aortic valve neocuspidization (AV Neo) using glutaraldehyde-treated autologous pericardium was first reported by Ozaki et al. in 2007. This technique has become an alternative to tissue and mechanical valve in selected patients as long-term anticoagulation is not required and shows promising midterm results and durability. METHOD: A comprehensive search was performed on the major database using the search terms "Ozaki technique" AND "Aortic Valve Neocuspidization" AND "AV Neocuspidization" AND "Autologous pericardium" AND "glutaraldehyde-treated autologous pericardium." Articles up to August 1st, 2021 were included in this study. RESULTS: A total of nine studies with a total of 1342 patients were included. The mean age was 67.36 and 54.23% were male. 66.32% and 23.92% of patients had aortic stenosis and aortic regurgitation, respectively. 66% of patients had a native tricuspid aortic valve (AV) and 31.37% of patients' native AV was bicuspid. Three studies reported their experience performing AV Neo via ministernotomy. CONCLUSION: AV Neo can be a suitable alternative to surgical AV replacement in selected patients. The short- and midterm outcomes are comparable without the need for long-term oral anticoagulation. Long-term follow-up data are required for this novel approach to be widely adopted.


Assuntos
Estenose da Valva Aórtica , Procedimentos Cirúrgicos Cardíacos , Feminino , Humanos , Masculino , Anticoagulantes , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Glutaral , Idoso
3.
Brain Commun ; 3(2): fcab114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136812

RESUMO

Amyotrophic lateral sclerosis and frontotemporal dementia are overlapping diseases in which MRI reveals brain structural changes in advance of symptom onset. Recapitulating these changes in preclinical models would help to improve our understanding of the molecular causes underlying regionally selective brain atrophy in early disease. We therefore investigated the translational potential of the TDP-43Q331K knock-in mouse model of amyotrophic lateral sclerosis-frontotemporal dementia using MRI. We performed in vivo MRI of TDP-43Q331K knock-in mice. Regions of significant volume change were chosen for post-mortem brain tissue analyses. Ex vivo computed tomography was performed to investigate skull shape. Parvalbumin neuron density was quantified in post-mortem amyotrophic lateral sclerosis frontal cortex. Adult mutants demonstrated parenchymal volume reductions affecting the frontal lobe and entorhinal cortex in a manner reminiscent of amyotrophic lateral sclerosis-frontotemporal dementia. Subcortical, cerebellar and brain stem regions were also affected in line with observations in pre-symptomatic carriers of mutations in C9orf72, the commonest genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Volume loss was also observed in the dentate gyrus of the hippocampus, along with ventricular enlargement. Immunohistochemistry revealed reduced parvalbumin interneurons as a potential cellular correlate of MRI changes in mutant mice. By contrast, microglia was in a disease activated state even in the absence of brain volume loss. A reduction in immature neurons was found in the dentate gyrus, indicative of impaired adult neurogenesis, while a paucity of parvalbumin interneurons in P14 mutant mice suggests that TDP-43Q331K disrupts neurodevelopment. Computerized tomography imaging showed altered skull morphology in mutants, further suggesting a role for TDP-43Q331K in development. Finally, analysis of human post-mortem brains confirmed a paucity of parvalbumin interneurons in the prefrontal cortex in sporadic amyotrophic lateral sclerosis and amyotrophic lateral sclerosis linked to C9orf72 mutations. Regional brain MRI changes seen in human amyotrophic lateral sclerosis-frontotemporal dementia are recapitulated in TDP-43Q331K knock-in mice. By marrying in vivo imaging with targeted histology, we can unravel cellular and molecular processes underlying selective brain vulnerability in human disease. As well as helping to understand the earliest causes of disease, our MRI and histological markers will be valuable in assessing the efficacy of putative therapeutics in TDP-43Q331K knock-in mice.

4.
Rev Sci Instrum ; 91(8): 083902, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872945

RESUMO

Response to uniaxial stress has become a major probe of electronic materials. Tunable uniaxial stress may be applied using piezoelectric actuators, and so far two methods have been developed to couple samples to actuators. In one, actuators apply force along the length of a free, beam-like sample, allowing very large strains to be achieved. In the other, samples are affixed directly to piezoelectric actuators, allowing the study of mechanically delicate materials. Here, we describe an approach that merges the two: thin samples are affixed to a substrate, which is then pressurized uniaxially using piezoelectric actuators. Using this approach, we demonstrate the application of large elastic strains to mechanically delicate samples: the van der Waals-bonded material FeSe and a sample of CeAuSb2 that was shaped with a focused ion beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...